Handover parameter optimization in LTE self-organizing networks

72nd Vehicular Technology Conference
6–9 September 2010
Ottawa, Canada

T. Jansen, I. Balan, J. Turk
I. Moerman, T. Kürner
1. Introduction
2. Simulation environment and metrics
3. Initial performance studies
4. Handover optimisation SON algorithm
5. Simulation results
6. Conclusion
Introduction

- **Problem**
 - Handover parameter optimisation is done manually
 - high OPEX
 - long optimisation intervals based on error reports
 - Non-optimal handover performance
 - handover failures
 - ping-pong handovers
 - call dropping

- **Handover parameter optimisation objective**
 - automate the optimisation
 - adapt the handover parameters on a short-term scale
 - optimise the handover performance

- **Approach**
 - analyse the system behaviour
 - develop handover optimisation algorithm
Input data
- Realistic SOCRATES scenario
 - 1.5 km * 1.5 km area
 - Up to 78 cells
- Microscopic traffic simulator
 - Mobile users (cars) with different speed (up to 50 km/h)
 - Ray-Tracer
 - Pathloss information to best 30 cells
 - User position updates every 100 ms

Update RSRP/SINR
- 3dB shadow fading map

Handover procedure / algorithm
Control parameters
 - Hysteresis
 - Time-to-Trigger

Assessment metrics
 - Handover failure ratio
 \[HPI_{HOF} = \frac{N_{HO_fail}}{N_{HO_fail} + N_{HO_succ}} \]
 - Ping-Pong handover ratio
 \[HPI_{HPP} = \frac{N_{HO_pp}}{N_{HO_pp} + N_{HO_npp} + N_{HO_fail}} \]
 - Call dropping ratio
 \[HPI_{DC} = \frac{N_{HO_dropped}}{N_{HO_accepted}} \]
Simulation metrics

- **System metrics**

 - **RSRP** (Reference Signal Received Power)

 - cell transmit power P_c

 - pathloss L_{ue} to the UE

 - shadow fading L_{fad} with a standard deviation of 3dB

 $\text{RSRP}_{c,ue} = P_c - L_{ue} + L_{fad}$

- **SINR** (Signal to Interference Noise Ratio)

 - interfering cells N

 $\text{SINR}_{c,ue} = \text{RSRP}_{c,ue} - 10 \cdot \log_{10} \left(\sum_{n=1}^{N} \frac{\text{RSRP}_{n,ue}}{10} \right)$
Initial performance studies

- **Objective**
 - Analyse the system behaviour and sensitivity
 - Find handover algorithm approach

- **Simulation assumptions**
 - All resources are used in all cells (maximum interference)

- **Simulation approach**
 - Perform system simulations for all hysteresis and time-to-trigger value combination (handover operating point)

<table>
<thead>
<tr>
<th>Simulation parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation time</td>
<td>200 [s]</td>
</tr>
<tr>
<td>Simulation step time</td>
<td>0.01 [s]</td>
</tr>
<tr>
<td>Simulation area (mobile users)</td>
<td>1.5 km * 1.5 km</td>
</tr>
<tr>
<td>Number of users</td>
<td>30</td>
</tr>
<tr>
<td>eNodeB transmit power</td>
<td>46 [dBm]</td>
</tr>
<tr>
<td>Number of considered cells in the scenario</td>
<td>76</td>
</tr>
<tr>
<td>Measured cells (N)</td>
<td>21</td>
</tr>
<tr>
<td>Considered interfering cells for SINR calculations</td>
<td>20</td>
</tr>
<tr>
<td>Critical ping-pong handover time (T_crit)</td>
<td>5 [s]</td>
</tr>
<tr>
<td>Handover execution time</td>
<td>0.25 [s]</td>
</tr>
<tr>
<td>SINR averaging window</td>
<td>0.1 [s]</td>
</tr>
<tr>
<td>Min. SINR threshold</td>
<td>- 6.5 [dB]</td>
</tr>
</tbody>
</table>
Call dropping behaviour

Dipl.-Ing. Thomas Jansen, TU Braunschweig, Institut für Nachrichtentechnik

3D plot showing the relationship between call drops, time-to-trigger, and hysteresis dB.
Handover performance weighting function

- $\mathbf{HP} = w_1 \mathbf{HPI}_{\text{HOF}} + w_2 \mathbf{HPI}_{\text{HPP}} + w_3 \mathbf{HPI}_{\text{DC}}$

- w_x is the weight of the individual HPI
- $\mathbf{HPI}_{\text{HOF}}$ is the handover failure performance indicator
- $\mathbf{HPI}_{\text{HPP}}$ is the ping-pong handover performance indicator
- \mathbf{HPI}_{DC} is the dropped calls performance indicator

<table>
<thead>
<tr>
<th>Weighting parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>1.0</td>
</tr>
<tr>
<td>w_2</td>
<td>0.5</td>
</tr>
<tr>
<td>w_3</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Handover performance

Handover Performance (weights = [1 0.5 2])

Time-to-Trigger [s]

Normalised sum of weighted HO failure rate, ping-pong HO rate and call dropping rate

Hysteresis [dB]
<table>
<thead>
<tr>
<th>Simulation parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation time</td>
<td>1000 [s]</td>
</tr>
<tr>
<td>Simulation step time</td>
<td>0.01 [s]</td>
</tr>
<tr>
<td>Simulation area (mobile users)</td>
<td>1.5 km * 1.5 km</td>
</tr>
<tr>
<td>Number of users</td>
<td>50</td>
</tr>
<tr>
<td>eNodeB transmit power</td>
<td>46 [dBm]</td>
</tr>
<tr>
<td>Operating points (Hysteresis, Time-to-Trigger)</td>
<td>(4, 0.48), (6, 0.32), (8, 0.1), (9, 0.08) in [dB, s]</td>
</tr>
<tr>
<td>Number of considered cells in the scenario</td>
<td>78</td>
</tr>
<tr>
<td>Measured cells (N)</td>
<td>21</td>
</tr>
<tr>
<td>Considered interfering cells for SINR calculations</td>
<td>20</td>
</tr>
<tr>
<td>Handover performance averaging window</td>
<td>60 [s]</td>
</tr>
<tr>
<td>Critical ping-pong handover time (T_crit)</td>
<td>5 [s]</td>
</tr>
<tr>
<td>Handover execution time</td>
<td>0.25 [s]</td>
</tr>
<tr>
<td>SINR averaging window</td>
<td>0.1 [s]</td>
</tr>
<tr>
<td>Min. SINR threshold</td>
<td>- 6.5 [dB]</td>
</tr>
</tbody>
</table>
Performance of the non-optimised network

Handover Performance for the operating point (4, 0.48)

- Handover failure
- Ping-Pong handover
- Call dropping

Ratio [%]

Time [s]
Comparison of the network performance for four different operating points

- (4 dB Hys, 0.48 s TTT)
- (6 dB Hys, 0.32 s TTT)
- (8 dB Hys, 0.1 s TTT)
- (9 dB Hys, 0.08 s TTT)
Handover optimisation SON algorithm

Optimisation criteria for HPIs

<table>
<thead>
<tr>
<th>Handover Performance Indicator</th>
<th>Hysteresis</th>
<th>Time-to-Trigger</th>
<th>Optimisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handover failure ratio</td>
<td>< 5 dB</td>
<td>↑ TTT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 dB – 7 dB</td>
<td>↑ TTT & ↑ HYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 7 dB</td>
<td>↑ HYS</td>
<td></td>
</tr>
<tr>
<td>Ping-Pong handover ratio</td>
<td>< 2.5 dB</td>
<td>↑ TTT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 dB – 5.5 dB</td>
<td>↑ TTT & ↑ HYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 5.5 dB</td>
<td>↑ HYS</td>
<td></td>
</tr>
<tr>
<td>Call dropping ratio</td>
<td>> 6 dB</td>
<td>↓ TTT & ↓ HYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td><= 6 dB</td>
<td>↓ TTT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 7.5 dB</td>
<td>↓ TTT & ↓ HYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5 dB – 6.5 dB</td>
<td><= 0.6 s</td>
<td>↑ HYS</td>
</tr>
<tr>
<td></td>
<td>< 3.5 dB</td>
<td><= 0.6 s</td>
<td>↑ TTT & ↑ HYS</td>
</tr>
</tbody>
</table>

- Optimisation actions are added up
- Hys and TTT are only changed by one step at a time
- The new operating point has to belong to the set of “meaningful operating points”
Handover optimisation simulation results

Handover performance for the operating point (6, 0.32)

- Handover failure
- Ping-Pong handover
- Call dropping

Time [s]

Ratio [%]
Handover optimisation simulation results

Handover performance (Optimisation)

- Handover failure
- Ping-Pong handover
- Call dropping

Time [s]
Ratio [%]
The system behaviour for different handover operating points has been analysed.

- Handover performance can be optimised using the proposed algorithm.
- Handover operating points are chosen for every cell individually.
- The overall network performance is increased and the handover failure ratio and ping-pong ratio drop to zero in the shown case.

Next steps:
- Run the algorithm in other scenario (done)
 - Problem: Fixed ratio of target thresholds between the HPIs
- Enhance the handover optimisation algorithm (ongoing)
- Introduce different user types (pedestrians, indoor, etc) (ongoing)
Thank you very much for your attention